- ÜÇGENDE KENARORTAY BAĞNTILARI
1. Ağırlık Merkezi
Üçgenlerde kenarortaylar bir noktada kesişirler.Kenarortayların kesişim noktasına ağırlık merkezi denir.ABC üçgeninde [AD], [BE] ve [CF] kenarortaylarınımkesiştikleri G noktasına ABC üçgeninin ağırlık merkezi denir.

a. Ağırlık merkezi kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde böler.
ABC üçgeninde D, E, F noktaları bulundukları kenarlarınorta noktaları ve G ağırlık merkezi ise


b. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir.

c. ABC üçgeninde [AD] kenarortay ve |AG| = 2|GD| olduğundan G noktası
ağırlık merkezidir.
d. ABC üçgeninde [AD] kenarortay ve |CG| = 2|FG|
olduğundan G noktası ağırlık merkezidir.

e. ABC üçgeninde |AG| = 2|GD| ve |CG| = 2|GF|eşitliğini sağlayan G noktası ABC
üçgeninin ağırlık merkezidir.

2. Dik üçgende hipotenüse ait kenarortay hipotenüsün yarısına eşittir.
ABC dik üçgeninde [BD] hipotenüse ait kenarortay
|AG|=|DC|=|BD|
|

3. Kenarortayların Böldüğü Alanlar
a.Kenarortaylar üçgenin alanını altı eşit parçaya bölerler.

b.G ağırlık merkezi köşelere birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.

c. G ağırlık merkezi kenarların orta noktaları ile birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.

4.312 KURALI
ABC üçgeninde kenarortaylar ve [FE] çizilirse |AK| = 3x|KG| = x
|GD| = 2x eşitlikleri bulunur.

K noktası [AD] kenarortayının orta noktasıdır.
|
|
a. ABC üçgeninde kenarortaylar ve [FE] çizildiğinde şekildeki gibi bir alan bölünmesi oluşur.

b.Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür.

5. Kenarortay Uzunluğu
ABC üçgeninde A köşesinden çizilen kenarortayın uzunluğuna Vadersek

Bu bağıntı diğer kenarortaylar içinde geçerlidir.

Kenarortaylar taraf tarafa toplanırsa

Kenarortaylar taraf tarafa toplanırsa

6. Dik Üçgende Kenarortaylar
A açısı 90° olan bir dik üçgende kenarortaylar arasında


Hiç yorum yok:
Yorum Gönder